Если вы планируете сделку с его участием, мы настоятельно рекомендуем вам не совершать ее до окончания блокировки. Если пользователь уже обманул вас каким-либо образом, пожалуйста, пишите в арбитраж, чтобы мы могли решить проблему как можно скорее.
Команда исследователей из университетов Аризоны, Джорджии и Южной Флориды
Для просмотра ссылки необходимо нажать
Вход или Регистрация
механизм на основе машинного обучения, который, по их словам, может решить более 94% загадок CAPTCHA на сайтах в даркнете.Цель исследования заключалась в том, чтобы создать инструмент, который позволил бы сделать даркнет “более прозрачным” для изучения и упростить ИБ-экспертам сбор данных в даркнете в больших масштабах. Это позволило бы разработать более эффективные платформы киберразведки и превентивные меры для борьбы с утечками данных и прочими киберпреступлениями.
CAPTCHA (Completely Automated Public Turing test to tell Computers and Humans Apart, Полностью автоматизированный тест Тьюринга для различения компьютеров и людей) - тест для различения человека и компьютера. Его основная идея состоит в том, чтобы предложить такую задачу, которая легко решалась бы человеком, но была бы крайне сложна для компьютера.
Загадки CAPTCHA почти повсеместно присутствуют на ресурсах в “видимом” интернете, в “темной” сети они служат для защиты платформ от DDoS-атак конкурентов. Как правило, такие атаки осуществляются ботнетами, поэтому CAPTCHA является достаточно эффективной защитой. Сайты в даркнете реализуют собственный кастомный механизм CAPTCHA, что очень усложняет создание автоматизированного инструмента, эффективного для решения всех загадок.
Для решения этой проблемы специалисты разработали систему под названием DW-GAN, интерпретирующую рестеризованные изображения. Новый инструмент может различать буквы и цифры (исследуя их по одной), убирать шум в изображении, определять границы между буквами и сегментировать контент в отдельные символы, при этом размер CAPTCHA не имеет значения.
Для распознавания символов система использует образцы, извлеченные из различных локаций. Механизм идентифицирует линии и углы, поэтому обмануть его, меняя местами символы, размер шрифта и его цвет, довольно сложно.
Исследователи протестировали систему на примере уже несуществующего даркнет-рынка Yellow Brick, предлагавшего нелегальные товары, в частности украденные кредитные карты, взломанные учетные записи и пр. В ходе эксперимента система смогла за 76 минут решить загадки CAPTCHA на 1 831 странице продукта.
Исследователи
Для просмотра ссылки необходимо нажать
Вход или Регистрация
финальную версию инструмента на GitHub, но не предоставили набор данных из 50 тыс. изображений CAPTCHA, используемый для обучения системы.
Для просмотра ссылки необходимо нажать
Вход или Регистрация